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Diurnal tides and shear instabilities 
in a rotating cylinder 

By RORY THOMPSON 
Department of At,mospheric Sciences, Oregon State University, Corvallis 

(Received 21 April 1969 and in revised form 27 October 1969) 

Any slight tilt or tide on the fluid in a rotating cylinder causes periodic motions, 
whose radiation pressures in the viscous boundary layers force mean differential 
rotations of the fluid, which are found numerically. At certain fluid depths, even 
very small tilts can cause shears large enough for perturbations to overcome 
Ekman friction, causing turbulence. An experiment confirms the theory. 

1. Introduction 
The most common geophysical fluid dynamic laboratory models involve 

annuli, including cylinders. Thus it is reasonable to study the models' responses 
to extraneous influences such as tides or imperfections of rotation, especially 
since one can hope to actually find solutions and compare them with experiments, 
unlike the real-world flows. Baines (1967) theoretically studied axisymmetric 
forced oscillations of a finite rotating cylinder and found that the asymptotic 
periodic flow contains pseudo-random patterns of internal shear for forcing 
slower than the rotation frequency. Aldridge (1967) experimentally studied axi- 
symmetric modes of a rotating sphere excited by a small torsional oscillation. 
For rotating annuli, visible effects of the misalignment of the axis of rotation 
were noted by Fultz et al. (1959) and McDonald & Dicke (1967), but apparently 
the only previous studies of the effects have been by Fultz (1965) and Crow (1965). 
Fultz found that the water in a rotating, tilted rectangular box developed a 
powerful central vortex for a certain range of water depths. Crow found the same 
for a cylinder and showed that the depth of the water when a vortex occurred was 
near that of a resonance of inviscid fluid in a cylinder with an artificial pressure 
to keep the surface plane. 

The radius is R, the viscosity is p, and the mean depth of the water is H .  
The usual cylindrical co-ordinates are taken rotating with the cylinder, so z is 
along its axis, r is radial, and 8 is counter-clockwise. The angular velocity a 
is chosen positive. So, the height around which to linearize is 

H + ( Q2/2g) (r2 - +R2) + ET cos (0 + at), 
choosing 0 counter-clockwise from the projection of S2 onto the horizontal. The 
deviation from this depth is denoted 7. Let u be the radial velocity drldt, v be the 
tangential velocity rdeldt, and w be the vertical velocity dzldt. Let p be the 
deviation pressure from hydrostatic, which latter includes centrifugal force and 
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738 Rory Thompson 

the (rotating) horizontal component of gravity as well as the vertical component. 
Surface tension is neglected. Now scale t by Q-l, r and z by R, u, v, and w by 
sQR, p by eR2Q2, and 7 by eFR, where P = Q2R/g. Also define E = v/QH2. 

FIGURE 1. Schematic diagram, showing notation : the cylinder is rotating at angular 
velocity C2 about its axis of symmetry at angle 8 from vertical. 

Expand the non-dimensional variables in the small parameter e, so 

u = Uo + €U1 + O(e2), 

etc. and separate the coefficients of E to get the zero-order (linear) equations (1.1). 

u, = 0 at r = 1 and no singularity at  r = 0, 



and 

at 
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Po = 70, 

wo = -rsin(S+t)+F(ay,/at)+Pu,r 

z = aF(2r2- 1) + H / R .  
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2. Zero-order interior solution 
In  the interior, E is negligible (0(10-5) in the experiments discussed later), 

so set E = 0. The equations are linear, so, only keeping the driven components of 
flow, write 

and combine the resultant equations to get 

wo = w(r,  z )  sin (0 + t ) ,  yo = q(r)  cos (S+ t ) ,  etc., 

with boundary conditions 

2=0  at z = o ,  
az 

- + - = O  aP 2P at r = l ,  
ar r 

By the usual separation techniques, the solution is of the form, 

00 

with h to solve AJ;(A) + 2J,(A) = 0. (2.3) 

For A2 < 0, there is no non-zero ,u = ih which satisfies ,d; (p)  + 21,(,u) = 0, since 
I,(s) = iJ,(ix) is monotonic. Using the Bessel function tables of Abramowitz & 
Stegun (1965), the first five roots of (2.3) were found to be 

A, = 2-735, A, = 5.691, A, = 8.767, A, = 11.875 and A, = 14.997, 

The motions corresponding to these eigenvalues are plainly inertial waves, 
which will be influenced by gravity through the surface boundary condition. 
Each of the modes satisfies the homogeneous bottom and side boundary con- 
ditions; a sum is necessary to satisfy the inhomogeneous surface boundary 
condition. Unfortunately, as well as being inhomogeneous, it is inseparable, so 
some sort of expansion is necessary. H is small in the experiments, so it can be 
used as the expansion parameter. Using a Taylor expansion in -F, the surface 
condition is 

aP -+-(2r2-1)- F a2P = r + - - - P r - + O ( F 2 )  FP 1 aP 
az 4 a22 3 3 ar 

at z = H / R .  Perhaps such an expansion is questionable for the higher modes 
4’1-2 
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(those for which nF 2 l) ,  but these will not be studied much, since they are 
more susceptible to  friction. 

To make 

multiply each side by rJl(A,y) and integrate over (0 , l ) .  The resulting linear sys- 
tem determines the response (A,} unless the determinant is zero, in which case 
there is a resonance. 

In  the resulting infinite linear system, all of the off-diagonal terms are O(F),  
so one may solve to O(F) by just setting them to zero, to yield estimates for the 
first few coefficients of 

(2.6) 1 A ,  = - 2 - 3 5 / ( ~ , +  0*292F~, ) ,  

A ,  = 0*90/(~,- 0.071F~, ) ,  

A ,  = 0*49/ (~ , -  0*29P~, ) ,  

where s, = sin (h lH/d  3 R), etc. 
While the system formally has a dense set of singular depths, one does not 

expect to see the higher modes, both because the coefficients decrease rapidly 
with n, and because viscosity will damp them more. The first few resonant 
depths, from (2.6), are 

(HIR) ,  = 1.990- 0*185F, 

(HIR) ,  = 0*956+ 0*022F, 1-912 + O*O22F, 

( H / R ) ,  = 0.621 + 0.057F, 1.241 + 0.057F, 1.862 + 0*057F, etc. J 
These resonance depths, including the O(F)  corrections, will be exploited in the 
instability bounds of 5 5. 

3. Zero-order boundary solutions 
While using a very small value for E al1ows:viscosity to be ignored throughout 

most of the fluid, the high order terms become important in a region of relative 
height 8 4  from the bottom. Resealing (1.1) by 6 = E d z ,  and dropping terms 
O(E*),  the boundary equations are: 
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with uo = uo = wo = 0 at 5 = 0, 

and the solution merges with the interior. This problem might be called a time- 
dependent Ekman layer problem. In the same fashion as the steady Ekman 
problem, and writing ala t - t i ,  one gets 

which has characteristic roots (1 - i)/4 2 and i. ( 1  + i) 48. Boundedness as 
g+m excludes the roots with positive real parts, so imposing uo = uo = wo = 0 
at 5 = 0, restoring the factor eit, and taking real parts, one has in the bottom 
boundary : 

+ Et (L 2 4 2  + 6 4 6  l ) c o s  ( B + t )  + E3 (&- &) sin ( 8 t t ) )  . J 
Thus, the effective vertical velocity at  the bottom of the interior is 

= Z AnAkJ,(Anr) Ef [ (6 + &) cos (8 + t )  + 
(3 .3 )  

this can be combined with the pressure at  the bottom t o  find the net energy flux 
out of the bottom 

The full viscous zero-order equations are given as (1.1). Considering the side 
boundary layers, write s = P 1 ( r  - l), and expand in S. The continuity equation 
and u = 0 at s = 0 force resealing u by 6 also. The viscous terms do not enter the 
equations in S until S = Eg, so the interior equations hold outside an Et layer, 
and there is no need to consider an E4 or EB layer. When 6 = E:, po  is independent 
of s, the vo and wo equations are simple diffusion equations, the continuity equa- 
tion may be integrated to give uo, and the net energy flux out of the sides near 
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an nth resonance depth is 

There must be an energy source to feed these sinks, and this is gravitational 
torque working on a viscously rotated centre of mass, since the fluid depth is not 
axisymmetric. If the centre of mass is rotated go", the torque and energy input 
will be maximized. Near a resonance depth, we need only consider the resonant 
component in the full Bessel expansion for the depth, for which the maximum 
energy generation is 

Setting this bound on the energy source equal to the sum of the two energy sinks 
gives an upper bound on a resonant component A,, 

I A ,  < E-*(0*148)/(0*146+ 0*188H/R), 

A ,  < E-6(0.0170)/(0-087 + 0-224H/R), 

A,  < E-*(0*0044)/(0-067 +0.275H/R). 
(3.7) 

These same bounds can be found, less physically, by using 

and integrating by parts, with the boundary conditions for (2.1) modified to 
include the O(E4) contributions from (3.4) and (3.5). During revision of this paper, 
it was found that Gans (1969) used this latter technique on a very similar problem. 

4. First-order mean motion 
The mean motion only will be considered, denoted by a superbar. Since 8 and t 

only occur in the combination (0 + t ) ,  a time average is also a 0 average, i.e. a 
steady state has been reached. Write 

These are known from (3.2), though cumbersome. 

and boundary layers. The interior equations are: 
Standard boundary-layer theory suggests splitting the problem into interior 

9 ( r ,  z )  = - - + 2v1, (4.2) ar 
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0 = --a,, (4.3) 

au, u, aw, 
- +- f- = 0,  
ar r az (4.5) 

with boundary conditions to match the boundary solutions. Z? vanishes in the 
interior, since uo and w,, are there out of phase. Equations (4.3) and (4.5) imply GI 
is independent of z, which, with the kinematic free surface condition W1 = rFE,, 
implies W, = 0. 

Eliminating p between (4.2) and (4.4) gives 

but leaves El ambiguous by any axially symmetric geostrophic flow. Since we 
are interested precisely in such, this is inconvenient. 

Since the nth resonance is such that sin (A, HIJ 3 R) = 0, cos2 (A, H/,/  3 R) = 1, 
and 

JOH'" - a x  a: =o. 
Jo zdz= 

HIR 

Thus, the vertical average of is 3,(0 + , r )  near a resonance depth. Greenspan 
(1969) claims this is true for all depths. The bottom boundary determines this 
value. 

Physically, one looks for steady flows in the boundary driven by radiation 
pressure. Return flows in the upper parts of boundary are relatively free of 
friction and require values El by conservation of angular momentum. Thus the 
boundary-layer flow determines the vertical average of El in the interior, through 
determining what pressure gradients apl/ar may be allowed. Suppress writing r ,  
and apply scaling of the usual boundary variety (5  = E-&) to get the mean 
first-order flow in the boundary: 

azu, ap, 
59(<) = 2 5 , + ~ - - - ,  ag ar 

a%, 
%(<) = - 2 G 1 + 7 ,  ac 

0- ap1 
a{ 

au, u, awl -+-+- = 0, 
ar r ag 

_ - -  u1 = v1 = w1 = 0 at  [ = 0, 
u1 and W l + 0  as g+co. - 

(4.7) 

The system (4.7) is a two-boundary-value problem on an infinite interval. 
Of numerical solution methods, 'shooting ' is the most convenient for determining 
the values a p l p  which allow solution. Reformulate the w boundary conditions 
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via the continuity equation: 

so c1 d< = 81.. 

1.e. no vertical flux out implies the total horizontal flux is constant. For a cylinder, 
this flux must be zero at r = 0, so the boundary equations are: 

U,(O) =V,(0) = 0, 

au, av, 
- and -+0 as <+a, 
a< a< 

where a p 1 p  is written c to emphasize its independence of 6, and is determined 
by the five boundary conditions on the fourth-order equation. 

One may note that there are no r derivatives in (4.8), so no boundary con- 
ditions in r may be satisfied, except by boundary layers. A discontinuity in v 
at r = 0 or at r = 1 will smooth out over a distance of O(Ei ) ;  see Stewartson 
(1957). A t  r = 1, one might worry about the zero-order forcing in the Et side-wall 
layers giving forced mean velocities (Ti, 5, G), but these can be taken as the inner 
boundary for an E f  layer which will balance out U and W. Then an Ea layer will 
allow 5 to match the interior. Howard (1968) seems to be the first to have worked 
out the details for a general steady side-wall problem. 

The system (4.8) can be numerically solved by simultaneously computing 
three independent solutions which all satisfy the conditions U1 = Z1 = 0 at < = 0. 
The outer boundary condition can be satisfied if there is a linear combination of 
the three solution vectors which satisfies au,ja< = av,/a< = w1 = 0 as <+a, 
which is so if the determinant of these three variables for each of the three vectors 
goes to zero. If it does not, use the sign of the determinant to search for a better 
value for c, by bisecting the interval within which the zero is known to lie. 
Given c ,  6, at the outer edge of the boundary layer is g(S + c ) ,  and is plotted for 
the first three resonances in figure 2. Note that a first-order vortex occurs at the 
origin in each case; one expects the discontinuity to smooth out through an E i  
boundary core. The exponentially growing possible solutions to the equations 
limited the integration to < < 12. Fortunately, S and 2 had effectively reached 
their asymptotic values well before then, so the limitation was not serious. 

Using the determinant approach avoided having to find the actual initial 
conditions necessary to hit the boundary conditions at  infinity. This was highly 
necessary while shooting, for the undesired exponentially growing solutions 
rendered the solution highly unstable, as numerical experiments confirmed. 
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Thus, another technique is necessary to find the actual velocities in the boundary 
layer. Now that the eigenvalues c(r ,h,)  are known, relaxation may be used. 
Liepmann relaxation in alternating directions was used, with a visual display 
to  check for satisfactory convergence. With random initial conditions, the con- 
vergence was slow due to what appeared to be a close analogue to slowly decaying 
geostrophic oscillations, with sweep number in the place of time. Over-relaxation 
just increased the frequency. So, a small amount of damping (slight increase in the 
magnitude of the middle coefficient in the differencing scheme) was introduced 
and then relaxed to zero itself thus very effectively damping the oscillations. 

.t. 
10 

1.0 

-0.5 - 

FIGURE 2. Non-dimensional mean azimuthal velocity at the top of the viscous boundary 
layer, for (a )  the f i s t  resonance, ( b )  the second resonance, and (c) the third resonance. 

The resultant non-dimensional radial mass fluxes in the boundary are sketched 
in figure 3 for the first three resonances. Features of interest about the depicted 
mass flux in the boundary layer are (i) that they represent somewhat distorted 
Ekman spirals and (ii) that the (closed) flows occur in n gyres for the nth 
resonance. These gyres, or ring vortices, will result in sweeping anything on the 
bottom into rings. 
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5. Possible shear instability 
The last section showed that there will be mean tangential velocities a1 in the 

interior, and consequently shears. Thus there is a possibility of shear instabilities, 
for which we need to consider deviations of the first-order flow from the forced 
mean found in the last section. The deviation equations are 

(5.1) 8% 
- + (uo . Vu, - u, . Vu,) + 2 n  x (Ul - ii,) = - V(pl  - PI). 
at 

0 0.5 

r +  

10 

t 5  
L n  

0 

5b 
1.0 

1 t 

0 

1 
1 .o 

r - f  

FIGURE 3. Non-dimensional radial mass flux in the viscous boundary layer, for 
(a )  the first resonance, ( b )  the second resonance, and (c) the third resonance. 

The friction terms may be neglected in the interior. The non-linear forcing from 
zero-order terms in (5.1) is purely periodic with twice the frequency of rotation 
of the cylinder, so if one averages (5.1) over one period, but not over 0, one has 

aii, 
- at + 2 n  x (iil-iil) = -V(P, -13,). (5.2) 



Tides und instabilities in a rotating cylinder 747 

If the perturbations are slowly changing, as when near marginal instability, the 
first term will be small compared to the others. Then, taking the curl of (5.2)’ 

( 2 8 .  V) (a, - a,) = 0, (5.3) 

which says that slow deviations (3, - a,) follow the Taylor-Proudman theorem 
in being independent of z, even if the mean flow itself is not. Thus, it is reason- 
able to average El with respect to z and consider the motion as two-dimensional 
. . . , especially since the instabilities were experimentally observed to be remark- 
ably independent of z before this argument was thought of. 

A scaling argument shows that, for such a system, the Ekman friction easily 
dominates lateral friction, so the latter will be neglected. This gives a barotropic 
shear problem which seems more relevant to geophysical fluid dynamics than 
the classical shear problems. Busse (1 968) studies that problem in some generality. 
Since the effect of the surface slope turned out to be small, and complicating, the 
appropriate ‘ Rayleigh ’ stability equation is given by Busse’s equation (3.3), 
which here becomes 

where the w, scale is EBQR, f = 5,(rEKIR)-l, the perturbation pressure is 
X(r) exp {;(me - swt)),  and the eigenvalue 

w + i  
m 

c = - .  

The interest centres on the resonances, when the instability occurs far enough 
away from the centre and f looks enough like a sinusoid to suggest that decent 
rough approximations for the eigenvalues c can be found from a Cartesian ana- 
logue with V = V, cos kx.  

Then (5.4) becomes 

( V - c )  (:$ - -m2@ ) - - - - @ = O .  zx: (5 .5 )  

Since c is complex, ( 5 . 5 )  is non-singular. Since the eigenvalue c is proportional 
to V,, for large enough V, I m  ( c )  will exceed 1 /m, so Im (w )  > 0 and there will be 
instability. By symmetry of (5 .5 ) ,  Re ( c )  = 0, so the most unstable disturbance is 
sinuous, and Howard’s (1961) semi-circle theorem and H~iland’s (see Howard 
1961) growth bound extend to give 

which imply necessary conditions for instability of 

V, > l /m ,  V, > 2/k .  (5.6) 

To get an improved estimate of c in ( 5 4 ,  one may try a Galerkin method of 
approximating @ by @o + @, exp ( ikx)  + @-, exp ( - i kx) ,  and making the error in 
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satisfying (5 .5 )  orthogonal to the expansion functions. The resultant three homo- 
geneous equations in $o, and give factors zero and 

which gives the minimum critical velocity as 

& = 3*41/k (5.7) 

for m = 0-643k. One expects a similar velocity shear somewhere to cause in- 
stability for the cylindrical case. Here, the velocity was scaled by E*QR, whereas 
El  is scaled by eQR. Thus (5.7) translates to 

A i s 2  I&\ QR = 3.41E)(QR/mzR), 

or 

where m:, the dimensional wave-number for the nth resonance, is about 27r/(R/n), 
since about n rolls fit in one radius. From figure 2,  a mean-square amplitude 
may be taken of 141 M 0.33, 0.41 and 0.31 for the first three resonances. 

The values of A, are found from (2.7), for P = 0.145, by trigonometric 
addition formulas, to be 

(5.9) I 
1 

A ,  = 2.34 lsin (1-65H/R)(-1, 
A, = 0.90 Isin (3*25H/R)]-*,  
A, = 0.49 Isin (477H/R)l-’. 

Using E* = 1-5* lO-5R/H to match the experiment, (5.8) and (5.9) give the 
approximate instability bounds 

(5.10) 
el = 0.034 lsin (1.65HIR)I ( R / H ) j ,  
s2 = 0.095 Isin (3.25HIR)I ( R / H ) i ,  
e3 = 0.20 Isin (4.7HIR)I (R/H)*, 

except for values of the sines small enough to cause the An’s of (5.9) to be near 
the limits imposed by viscosity from (3.7). For instance, the smallest e for n = 1 is 

tEf(0-146+0-188 * 1.98) 
((0*4:itE*28)) (0 .148)Ed  M 3.3 x 10-4. 

From the smallest values of e and (5.10), the instability bounds were plottedon 
figure 4. Where the tilt is large enough that the assumption of one resonant 
component being dominant seems doubtful, the bounds are dashed. 

6. Experimental verification 
It is time to show that the theory developed so far has some relation to reality. 

The turntable used was the 1 m table in the Fluid Dynamics Laboratory of 
the Woods Hole Oceanographic Institution, described in Ibbetson & Frazel 
(1965). Tilting was accomplished by a hand winch from a guard-rail to the 153 em 
square steel plate upon which the turntable stood, allowing reasonably accurate 
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measurement of small angles. The cylinders used were clear plexiglass of radius 
14.5 cm. A flat clear plastic sheet was used as a lid to get rid of torque from the air. 

Tilt e 

0.01 0.02 
I I 

0 0 0 0 DIY' 
J 

0 0 

e 0 0 0 0 

I I I I 

-2 

- 1.5 

,? 
I 

s 
- 1-0 

- 0.5 

-0 

FIGURE 4. Experimental results and theoretical bounds, as explained in the text. 
0, null ; 0, rings ; HI unstable rings. 

A typical run consisted of filling the cylinder to the desired depth with water 
mixed to room temperature, centring it on the turntable as closely as feasible, 
then speeding the turntable to 30rpm, as determined with a stop watch. The 
fluid was allowed to spin up for at  least twenty minutes, then potassium per- 
manganate crystals were dropped through small holes in the lid. When spin-up 
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was complete, the turntable was carefully tilted and left, still spinning, for half 
an hour or more before tilting further. The results are plotted in figure 4. If 
nothing much was observed, a circled dot was entered. If rings of ink were ob- 
served, a large circle was entered. It may be worth noting that these rings were 
not due to the location of the dye crystals, for they normally sharpened up long 
after the crystals had dissolved and occasionally clear areas formed over a crystal, 
except for its thin plume going either in or out. At higher tilts, the rings became 
unstable to wavy disturbances, with large wave-numbers (30 and up) for outer 
rings and small wave-numbers (2 to 4) for inner rings. The instability observa- 
tions are entered as heavy squares. Near resonances, the instability was violent 
enough that visible rings did not have time to form before powerful vortices 
formed. These vortices are presumably what Fultz and Crow observed, since 
they form most strongly near the first resonance. It may be worth noting that 
these vortices are not necessarily the firstlorder discontinuity vortex at the origin 
derived upon finding the theoretical g1 (though their continued existence may 
depend on similar causes), because they form from the instability on the inner 
ring when this grows slowly enough to be observed in detail. 

Looking at the completed diagram, we see there is good agreement with the 
theory: there are resonances which get weaker as n increases, there are rings of 
convergence and divergence in the bottom boundary, and the predicted in- 
stability boundaries are near the experimental ones. 

7. Conclusions 
The tilted experiment discussed above is more suitable for checking the Ekman 

damping effects on barotropic shear instabilities than the experiment with which 
Busse (1968) compared his theory. The horizontal scale of the shears in that 
experiment were small enough that the internal dissipation was comparable to 
the Ekman dissipation; and, in fact, the theory and experiment disagreed by 
a factor of 2. Here the match is better, which suggests that the boundary-layer 
theory cannot only simplify the shear theory, but can also be useful in finding 
the responses of the fluid in the tilted cylinder. For certain geometries, having 
the axis of rotation precisely vertical can be important for geophysical laboratory 
models. 

This paper formed a part of a thesis submitted to the Meteorology Department 
of the Massachusetts Institute of Technology. The author is indebted to Claes 
Rooth for suggesting the problem, Friedrich Busse for a helpful discussion, and 
L. N. Howard for being the thesis advisor. The Electrical Engineering Depart- 
ment of M.I.T. gave time on its PDP-1 computer, with which W. B. Ackermann 
helped. The paper is Contribution no. 2316 from the Woods Hole Oceanographic 
Institution (where it was completed). The author has been successively sup- 
ported by the National Science Foundation, the Fannie and John Hertz Founda- 
tion, and the Office of Naval Research under contract N00014-66-C0241. 



Tides and instabilities in a rotating cylinder 751 

REFERENCES 
ALDRIDGE, K. D. 1967 An experimental study of axisymmetric inertial oscillations of 

ABRAMOWITZ, M. & STEGUN, T. A. 1965 Handbook of Mathematical Functions. 

BAINES, P. G. 1967 Forced oscillations of an enclosed rotating fluid. J .  FZuid Mech. 

BUSSE, F.H. 1968 Shear flow instabilities in rotating systems. J .  Fluid. Mech. 33, 

CROW, S. 1965 Geophysical fluid dynamics participants lectures. Woods Hole Oceano- 

FULTZ, D. 1965 Talk at; midwestern mechanics conference. 
FULTZ, D., LONG, R. R., OWENS, G. V., BOHAN, W., KAYLOR, R. & WE=, J. 1959 StUdie8 

of Thermal Convection in a Rotating Cylinder with some Implicationa for Large-Scale 
Atmospheric Motions. Boston, Mass. : Amer. Meteor. Soc. 

a rotating liquid sphere. Ph.D. Thesis, Massachusetts Institute of Technology. 

Washington, D.C. : National Bureau of Standards. 

30, 533-46. 

577-89. 

graphic Institution 21. 

GANS, R. 1969 On the precession of a resonant cylinder. J .  FZuzcid Mech. (submitted). 
GREENSPAN, H. P. 1969 On the non-linear interaction of inertial modes. J. Fluid Mech. 

HOWARD, L. N. 1961 A note on a paper by John W. Miles. J. FZuid Mech. 10, 509-12. 
HOWARD, L. N. 1968 Geophysical fluid dynamics lecture notes. Woods Hole Oceano- 

IBBETSON, A. & FRAZEL, R. E. 1965 The construction of a one metre diameter rotating 

MCDONALD, B. E. & DICKE, R. H. 1967 Solar oblateness and fluid spin-down. Science, 

STEWARTSO N, K. 1957 On rotating laminar boundary layers. Preiburg Symposium 

36, 257-64. 

graphic Institution. 

table. W.H.O.I. ref. no. 65-41. 

158, 1562-4. 

Boecndavy Layer Research, pp. 59-71. 


